The Influence of Anionic Initiator on the Selected Properties of Poly-N-Isopropyl Acrylamide Evaluated for Controlled Drug Delivery.
نویسندگان
چکیده
The aim of the study was to monitor the influence of increasing initiator concentrations on the properties of poly-N-isopropylacrylamide (polyNIPA) nanoparticles obtained via surfactant free precipitation polymerization (SFPP). In all studied systems P-001 to P-1, the same amount of monomer was used, and increasing amounts of potassium persulphate (KPS). The course of each reaction was monitored by measuring the conductivity of the whole system. The resulting composition of products was confirmed by attenuated total reflectance within Fourier transformed infrared spectroscopy (ATR-FTIR) measurements. The hydrodynamic diameters with polydispersity index (PDI) and zeta potential (ZP) were measured in aqueous dispersions of the synthesized polymers in dynamic light scattering (DLS) device (λ = 678 nm), and were found to be for P-1: 20.33 nm (PDI = 0.49) and -7 mV, for P-05: 22.24 nm (PDI = 0.39) and -5 mV, for P-01: 50.14 nm (PDI = 0.49) and -3 mV, for P-005: 62.75 nm (PDI = 0.54) and -3 mV and for P-001: 509.4 nm (PDI = 0.61) and -12 mV at 18 °C, respectively. Initiator concentration affects the size and ZP of particles. The hydrodynamic diameter decreases with initiator concentration increase, whereas the time of the reaction decreases when the initiator concentration increases. This fact is reflected in the observed values of conductivity in the course of the performed reaction. Evaluated volume phase transition temperature in the range of 32 °C enables further research of the nanoparticles as thermosensitive drug carriers.
منابع مشابه
Montmorillonite Nanocomposite Hydrogel Based on Poly(acrylicacid-co-acrylamide): Polymer Carrier for Controlled Release Systems
In this paper, the synthesis of new montmorillonite nanocomposite hydrogel (MMTNH) based on poly (acrylic acid-co-acrylamide) grafted onto starch, is described. Montmorillonite (MMT) as nanometer base, acrylic acid (AA) and acrylamide (AAm) as monomers, ammonium persulfate (APS) as an initiator, N,N-methylenebisacrylamide (MBA) as a crosslinker and starch as a biocompatible polymer were pre...
متن کاملPreparation and Investigation of Poly (N-isopropylacrylamide-acrylamide) Membranes in Temperature Responsive Drug Delivery
Objective(s) Physiological changes in the body may be utilized as potential triggers for controlled drug delivery. Based on these mechanisms, stimulus-responsive drug delivery has been developed. Materials and Methods In this study, a kind of poly (N-isopropylacrylamide-acrylamide) membrane was prepared by radical copolymerization. Changes in swelling ratios and diameters of the membrane wer...
متن کاملInvestigation of Swelling Behavior and Mechanical Properties of a pH-Sensitive Superporous Hydrogel Composite
The objective of the present study is to develop and investigate the swelling behavior of pH-sensitive Superporous Hydrogel (SPH) and SPH composite (SPHC). A novel superporous hydrogel containing poly (methacrylic acid-co-acrylamide) was synthesized from methacrylic acid and acrylamide through the aqueous solution polymerization, using N,N-methylenebisacrylamide as a crosslinker and ammonium...
متن کاملInvestigation of Swelling Behavior and Mechanical Properties of a pH-Sensitive Superporous Hydrogel Composite
The objective of the present study is to develop and investigate the swelling behavior of pH-sensitive Superporous Hydrogel (SPH) and SPH composite (SPHC). A novel superporous hydrogel containing poly (methacrylic acid-co-acrylamide) was synthesized from methacrylic acid and acrylamide through the aqueous solution polymerization, using N,N-methylenebisacrylamide as a crosslinker and ammonium...
متن کاملPoly (Lactic Acid)Nanofibres as Drug Delivery Systems: Opportunities and Challenges
Numerous Scientists have discovered the procedure of nanotechnology, explicitlynanofibers, asdrug delivery systems for transdermal uses. Nanofibers canbe used to deliver drugs and are capable of controlled release for a continued periodof time. Poly (Lactic Acid) (PLA) is the lastly interesting employed synthetic polymer in biomedical application owing to its well categorized biodegradable prop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 22 1 شماره
صفحات -
تاریخ انتشار 2016